Abstract

AbstractElectronic properties of ternary skutterudites AX3/2Y3/2 (A=Co, X=Ge, Sn and Y=S, Te) are investigated using first principles calculations to clarify recent experimental results. Band derivatives are computed accurately within an approach based on Maximally Localized Wannier Functions (MLWFs). Band structures exhibit larger effective masses compared to parental binary CoSb3. Our results also indicate a more parabolic dispersion near the top of the valence band and a multivalley character in both conduction and valence band. Despite the improved thermopower these skutterudites has relatively low power factor due to increased resistivity. The fundamental cause of such large resistivity seems to be associated with the ionicity of the bonding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.