Abstract
Spectral and theoretical techniques were applied to investigate the electronic structure and spectra of two recently synthesized pentapyrrolic macrocycles, isomers of smaragdyrin: 16,20-dibutyl-2,3,6,7,10,11,15,21-octamethyl-[22]pentaphyrin-(1.1.1.0.0) (1) and 16,20-dibutyl-2,3,6,7,10,11,15,21-octamethyl-5-oxa-[22]pentaphyrin-(1.1.1.0.0) (2). Combined use of linear dichroism, magnetic circular dichroism, fluorescence anisotropy and INDO/S calculations resulted in the location and assignments of a number of electronic transitions (eleven for 1 and seven for 2). Even though the spectral pattern differs somewhat from that characteristic of most porphyrins, the results show that the four lowest excited electronic singlet states of both compounds are very well described by a four-orbital model, widely used for the interpretation of spectra in this type of compounds. Fluorescence and transient absorption/bleaching measurements enabled the determination of the rate constants of the radiative and nonradiative S1 depopulation processes. These photophysical properties are consistent with a rigid, nearly planar excited state geometry that is essentially unchanged with respect to the ground-state structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.