Abstract

We report the results of a (2+1) resonance-enhanced multiphoton ionization (REMPI) study of the E2Sigma+(4ssigma) Rydberg state of NO-Kr. We present an assignment of the two-photon spectrum based on a simulation, and discuss it in the context of previously-reported spectra of NO-Ne and NO-Ar. In addition, we report on spectra in the region of the vNO=1 level of the E, F and H' 4s and 3d Rydberg states of NO-Rg (Rg=Ne-Kr). Since the NO vibrational frequency is affected by electron donation from the rare-gas (Rg) atom to the NO+ core, as well as by the penetration of the Rydberg electron, the fundamental NO-stretch frequency reflects the interactions in the complex. The results indicate that the 4s Rydberg state has a strong interaction between the NO+ core and the Kr atom, as was the case for NO-Ar and NO-Ne. For the 3d Rydberg states, although penetration is not as significant as for the 4s Rydberg states, it does play an important role, with subtle angular effects being notable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.