Abstract

We examine the interaction between an open-shell chlorine atom and a para-H2 molecule in the region of configuration space that corresponds to a weakly bound Cl–para-H2 van der Waals dimer. By constructing and diagonalizing the Hamiltonian matrix that represents the coupled Cl atom electronic and H2 rotational degrees of freedom, we obtain one-dimensional energy curves for the Cl–para-H2 system in this region of configuration space. We find that the dimer exhibits fairly strong electronic-rotational coupling when the Cl–H2 distance R is close to ; however, this coupling does not modify substantially the positions and depths of the van der Waals wells in the dimer’s curves. An approximation in which the para-H2 fragment is treated in the strict limit thus appears to yield an accurate representation of those states of the weakly bound Cl–para-H2 dimer that correlate with H2 in the limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.