Abstract

We present a comprehensive computational study on the properties of rock salt-like and hexagonal chalcogenide Ge2Sb2Te5 supported by experimental data. We calculate the electronic structure using density functional theory (DFT); the obtained density of states (DOS) compares favorably with experiments, and is suitable for transport analysis. Optical constants including refractive index and absorption coefficient capture major experimental features, aside from an energy shift owed to an underestimate of the bandgap that is typical of DFT calculations. We also compute the phonon DOS for the hexagonal phase, obtaining a speed of sound and thermal conductivity in good agreement with the experimental lattice contribution. The calculated heat capacity reaches ∼1.4 × 106 J/(m3 K) at high temperature, in agreement with experiments, and provides insight into the low-temperature range (<150 K), where data are unavailable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.