Abstract

Devices such as keyboards and touchscreens allow humans to communicate with machines. Neural interfaces, which can provide a direct, electrical bridge between analogue nervous systems and digital man-made systems, could provide a more efficient route to future information exchange. Here we review the development of electronic neural interfaces. The interfaces typically consist of three modules — a tissue interface, a sensing interface, and a neural signal processing unit — and based on technical milestones in the development of the electronic sensing interface, we group and analyse the interfaces in four generations: the patch clamp technique, multi-channel neural interfaces, implantable/wearable neural interfaces and integrated neural interfaces. We also consider key circuit and system challenges in the design of neural interfaces and explore the opportunities that arise with the latest technology This Review Article examines the development of neural interfaces, which can provide a direct, electrical bridge between analogue human nervous systems and digital man-made devices, considering challenges and opportunities created with such technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.