Abstract

Abstract The electronic heat capacity (EHC) and magnetic susceptibility (MS) of the two-dimensional material ferromagnetic graphene's silicon analog, silicene, are investigated by the strain-induced and the applied electric field within the Green's function technique and the Kane-Mele Hamiltonian. Dirac cone approximation has been performed to investigate the system under strain along the zigzag (ZZ) direction. The main attention is focused on the effects of external static electric field in the presence of strain on EHC and MS of a ferromagnetic silicene sheet. In the presence of strain, carriers have a larger effective mass and transport decreases. As a result, the temperature dependence of EHC and MS gives a critical strain around 10%. Furthermore, electric field breaks the reflection symmetry of the structure and a transition to the topological insulator for strained ferromagnetic silicene has occurred when the electric field is increased. In this phase, EHC and MS have weird behaviors with temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.