Abstract
Electronic Health Records (EHRs) have become one of the main sources of evidence to evaluate clinical actions, improve medical quality, predict disease-risk, and optimize treatment effects. However, EHRs present several modeling challenges, including heterogeneous data types and dynamic characteristics. Reinforcement learning provides an efficient way for sequential decision-making. Powered by model-based reinforcement learning approach, we propose an EHRs-based reinforcement learning algorithm to optimize sequential treatment strategies for diseases, such as sepsis, diabetes, and their complications. We conduct our experiments with this algorithm to optimize physicians’ historical treatment strategies and achieve better glucose control for diabetic ketoacidosis (DKA) patients, which is one serious complication of diabetes. The research includes the modeling process and reinforcement learning process. During the EHRs modeling process, besides considering the necessary physiological variables, we also consider the major disease factors to enhance the interpretability of the model. In the reinforcement learning process, a deep Q network is employed to explore the optimal insulin dose for patients. Moreover, inspired by the real medical scenes, we extend the algorithm to cooperative learning environment. We use the joint policy of the two agents to simulate doctor consultations, and achieve better treatment performances in terms of policy and blood glucose control than single agent and clinicians.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.