Abstract

Gadolinium bisphthalocyanine (GdPc2) has been placed among the highest ranked molecular materials considered namely for modern optoelectronic applications including organic solar cells. To improve understanding of the correlation between GdPc2 magnetic properties and its electronic functionality, we experimentally and theoretically studied charge carrier concentration, charge mobility, and influence of local magnetic field on charge carrier transport. For better clearance, all the main studied properties of GdPc2 bisphthalocyanine were compared with Zn phthalocyanine (ZnPc) as a reference material. Conductivity and charge carrier mobility were measured in materials incorporated in FET active channels. UV Vis spectroscopy, Electron Paramagnetic Resonance Spectroscopy, and IR spectroscopy were also applied. The narrow band gap together with small ionization potential of GdPc2 lead to high free charge carrier concentration. Among parameters affecting charge carrier mobility, molecular arrangement and intermolecular and intramolecular charge carrier pathways were highlighted. The possibility that the interaction of the mobile charge carriers with the local magnetic field of GdPc2 molecules reduces charge carrier mobility is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.