Abstract

The two-electrode vacuum tube, or diode, consists of an electron-emitting cathode surrounded by a positive anode (plate). A plot of plate current (i{sub b}) vs plate voltage (e{sub b}) is shown. At low anode voltages, the anode current is limited by the repelling effect that the negative electrons already in the space have on the electrons just being emitted (space-charge effect). When a full space charge is present, the plate current depends upon the plate voltage according to Childs law: i{sub b} {approx} e{sub b}{sup 3/2}. Increasing the plate voltage eventually results in an electron flow equal to total cathode emission, after which further increases in anode voltage will produce practically no additional current (voltage saturation). However, for high field stresses, additional electrons are pulled out of the cathode (field emission), increasing the current even further.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.