Abstract

In this work, we report results for the static second hyperpolarizability of magnesium oxide clusters including electronic and vibrational contributions. The comparison between second-order Møller-Plesset (MP2) perturbation theory and coupled cluster results to the electronic contribution points out that MP2 is a suitable method to compute this property. When computed at the MP2 level, the electronic contribution per atom converges to approximately 5000 a.u. Vibrational corrections were computed at the MP2 level through the perturbation theoretical method of Bishop and Kirtman. Results obtained showed that the term [α2]0,0 represents around 20% of the electronic counterpart while the term [μβ]0,0 is comparable to it. Modes that contribute significantly to [α2]0,0 are those in which all or part of the bond lengths simultaneously increase and decrease, leading to large polarizability derivatives. In turn, modes that provide relevant contributions to [μβ]0,0 are those in which oxygen anions move in opposite directions to the magnesium cations yielding large derivatives of the dipole moment and first hyperpolarizability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.