Abstract
In this work we calculate the thermoelectric figure of merit of XHfPb (X= Ni, Pd, and Pt) by computing the both the power factor and the lattice thermal conductivity by first principles. We make reasonable approximations: we use the Constant Relaxation Time Approximation (CRTA) to compute the electron transport contribution and the modified Debye–Callaway model to calculate the thermal lattice conductivity. We also report the dielectric properties of these semiconductors and the mode Grüneisen parameters. Not surprisingly we find that the average Grüneisen coefficient correlates with the thermal conductivity. Next, we consider a realistic relaxation time τ and carrier concentration n from experimental data on ZrHfPb and obtain the figure of merit ZT as a function of temperature. Our main finding is that despite the Pt is isoelectronic with Ni and Pd, the ZT of PtHfPb is larger and behaves differently from the other two materials, suggesting that PtHfPb is better suited for high temperature thermoelectric generators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.