Abstract

We report a systematic computational investigation on the electronic and optical properties of some representive polyaromatic hydrocarbons of interest for solid-state applications. We focus in particular on the five first members of the circumacenes family (i.e., coronene, ovalene, circumanthracene, circumtetracene, and circumpentacene). For the isolated gas-phase molecules we performed all-electrons Density Functional Theory (DFT) and Time Dependent DFT (TDDFT) calculations with a localized Gaussian basis-set and the hybrid exchange-correlation functional B3LYP. We quantified the effect of the complete substitution of peripheral hydrogen atoms with fluorine atoms for a series of key molecular properties relevant for molecular electronics and photonics: electron affinities, ionization energies, quasi-particle energy-gaps, optical absorption spectra, and exciton binding energies. We discuss the possible implications of the general trends observed with respect to both fundamental research and opto-electronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.