Abstract

X-ray absorption spectroscopy (XAS) on the Pt and Au L3 edges showed that the structure of platinum and gold nanoclusters differs from that of the bulk metals. The interatomic distances are contracted and the s, p, and d orbitals rehybridize, which results in less filled 5d valence bands. The XAS spectra of the monometallic clusters were used to interpret the effect of alloying platinum and gold. Preparation of SiO2- and TiO2-supported PtAu catalysts from a Pt2Au4(C⋮CBut)8 precursor resulted in well-mixed bimetallic clusters. Gold was preferentially located on the surface of the small clusters. X-ray absorption near-edge spectroscopy (XANES) showed that the electronic structure of platinum and gold differed from that in the monometallic clusters. The Fermi levels of platinum and gold shifted in opposite directions: the position of the Pt L3 edge shifted to higher energy and the Au L3 edge shifted to lower energy. Furthermore, the white-line intensity increased for gold and decreased for platinum. These c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.