Abstract

We analyze existing optical data in the superconducting state of LiFeAs at T = 4 K, to recover its electron-boson spectral density. A maximum entropy technique is employed to extract the spectral density I2χ(ω) from the optical scattering rate. Care is taken to properly account for elastic impurity scattering which can importantly affect the optics in an s-wave superconductor, but does not eliminate the boson structure. We find a robust peak in I2χ(ω) centered about ΩR ≅ 8.0 meV or 5.3 kBTc (with Tc = 17.6 K). Its position in energy agrees well with a similar structure seen in scanning tunneling spectroscopy (STS). There is also a peak in the inelastic neutron scattering (INS) data at this same energy. This peak is found to persist in the normal state at T = 23 K. There is evidence that the superconducting gap is anisotropic as was also found in low temperature angular resolved photoemission (ARPES) data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.