Abstract

A uniform dose to the target site is required with a knowledge of delivered dose, central axis depth dose, and beam flatness for successful electron treatment at an extended source to surface distance (SSD). The central axis depth dose is shown to be nearly independent of moderate changes in the treatment distance. The delivered dose at a point could be calculated with the concept of virtual source position and an inverse square correction. In an extended SSD treatment, underdosage of the lateral tissue may occur due to reduced beam flatness. To study the changes in beam characteristics, the depth dose and beam flatness were measured at different SSDs for clinically used field sizes [(3 x 3)-(15 x 15) cm2] and beam energies ranging from 6 to 20 MeV. Our results indicate that the changes in depth dose are minimal except in the buildup region for most energies. In general, the surface dose is decreased (< or = 10%) as the SSD is increased moderately. Beam flatness was measured in terms of target coverage factor (TCF) defined as the ratio of the width of a specified isodose line to the geometrical field width. It was observed that the loss in beam flatness is significant for smaller fields, higher isodose lines, and lower energies. Variations in SSD have a minimal effect on the relative changes in beam flatness for field sizes greater than 8 x 8 cm2. The lateral loss of beam uniformity could be estimated by various parameters, such as the full width at half maximum, the homogeneity index, the uniformity index, and the TCF; however, TCF is a simpler parameter to use clinically. The beam characteristics (depth dose and TCF) at extended treatment distances are presented for electron beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.