Abstract

The electron trapping in MOS capacitors with amorphous Al2O3 as an insulating layer was studied through pulsed capacitance-voltage technique. A positive shift of the voltage value corresponding to a constant capacitance (VC) was observed. The dependences of the voltage instability with the applied bias and the charging time were investigated. Two different contributions could be distinguished: a hysteresis phenomenon observed on each measurement cycle, and a permanent accumulated VC-shift to which each measurement cycle contributes. A physical model based on tunneling transitions between the substrate and defects within the oxide was implemented. From the fitting procedure within the energy range covered in our measurements (1.7–2.7 eV below the conduction band edge), the trap density was found to decrease exponentially with trap energy depth from 3.0 × 1020 cm−3 eV−1 to 9.6 × 1018 cm−3 eV−1, with a uniform spatial distribution within the first 2 nm from the semiconductor interface for the hysteresis traps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.