Abstract

Electron transfer, under conditions of weak interaction and a medium acting as a passive thermal bath, is very well understood. When electron transfer is accompanied by transient chemical bonding, such as in interfacial coordination electrochemical mechanisms, strong interaction and molecular selectivity are involved. These mechanisms, which take advantage of "passive self-organization," cannot yet be properly described theoretically, but they show substantial experimental promise for energy conversion and catalysis. The biggest challenge for the future, however, may be dynamic, self-organized electron transfer. As with other energy fluxes, a suitable positive feedback mechanism, through an active molecular environment, can lead to a (transient) decrease of entropy equivalent to an increase of molecular electronic order for the activated complex. A resulting substantial increase in the rate of electron transfer and the possibility of cooperative transfer of several electrons (without intermediates) can be deduced from phenomenological theory. The need to extend our present knowledge may be derived from the observation that chemical syntheses and fuel utilization in industry typically require high temperatures (where catalysis is less relevant), whereas corresponding processes in biological systems are catalyzed at environmental conditions. This article therefore focuses on interfacial or membrane-bound electron transfer and investigates an aspect that nature has developed to a high degree of perfection: self-organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.