Abstract

AbstractThe interaction between microorganisms that contain thick cell walls, such as the Gram‐positive bacterium Enterococcus faecalis, and conductive surfaces can be improved by using redox polymers as mediators. Herein, we report a detailed electrochemical characterization of the communication between E. faecalis cells and a series of osmium redox polymers with different redox potentials. The current generated from glucose oxidation by films containing osmium redox polymers and E. faecalis cells increase over time (28 h), owing to a decrease in charge‐transfer resistance within the films, possibly owing to improved penetration of the redox polymer within the bacterial cell wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.