Abstract

Using density-functional calculations, we examine the electronic structure of magnetite in the spinel crystal structure in order to gain insight into the nature of the Verwey transition. The calculated cohesive and magnetic properties are in agreement with experimental results. The magnetic structure is analyzed using a Stoner model as well as from calculations within the framework of the local-spin-density approximation to the density-functional theory. The calculations show a minority-spin band at the Fermi energy consisting of ${\mathit{t}}_{2\mathit{g}}$ orbitals on the Fe(B) sublattice. These results suggest a three-band spinless model Hamiltonian for the description of the Verwey transition. The hopping integrals and the electron interaction parameters entering the model Hamiltonian are calculated using the ``constrained'' density-functional theory. The calculated parameters are consistent with the electronic origin of the Verwey transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.