Abstract

Erbium doped crystals offer a versatile platform for hybrid quantum devices because they combine magnetically sensitive electron-spin transitions with telecom-wavelength optical transitions. At the high doping concentrations necessary for many quantum applications, however, strong magnetic interactions of the electron-spin bath lead to excess spectral diffusion and rapid decoherence. Here we lithographically fabricate a 4.4 GHz superconducting planar microresonator on a ${\text{CaWO}}_{4}$ crystal doped with Er ions at a concentration of 20 ppm relative to Ca. Using the microwave resonator, we characterize the spectral diffusion processes that limit the electron-spin coherence of Er ions at millikelvin temperatures by applying two- and three-pulse echo sequences. The coherence time shows a strong temperature dependence, reaching 1.3 ms at 23 mK for an electron-spin transition of $^{167}\mathrm{Er}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.