Abstract
The electron spin resonance spectra (ESR) of complexes of copper with fibrous cotton cellulose under various experimental conditions were determined. Cupric ions dissolved in solutions of strong bases, such as concentrated ammonium hydroxide, sodium hydroxide, and potassium hydroxide, formed complexes with fibrous cotton cellulose. These complexes had paramagnetic resonance properties and generated characteristic ESR spectra. Cupric ions dissolved in solutions of highly ionized neutral salts, such as sodium chloride, formed complexes with cellulose. These complexes also generated the same characteristic ESR spectra as the complexes formed in solutions of strong base. The reaction between cupric ions and cellulose was evidently very rapid and reversible. When the concentration of ammonia was decreased in, or ammonia was removed from, the cupric ion–ammonium hydroxide–cellulose complexes, the paramagnetic resonance properties of the complex were decreased or lost. Similar results were received when potassium hydroxide was removed from the complexes. The compositions of the complexes evidently are variable, that is, under different experimental conditions the relative intensities of the lines of the ESR spectra of the complexes varied, although the hyperfine splittings of the lines were constant. It was concluded that reactions of cupric ions to form complexes with adjacent hydroxyl groups on the cellulose molecule depended on an optimum spatial arrangement of the hydroxyl groups, that is, distance between the groups. Evidently, wetting of cotton cellulosic fibers with solutions of strong bases or neutral salt allowed rotation about the C2–C3 bond to yield this optimum arrangement. When the base or salt was removed, rotation occurred to give less favorable positions of the hydroxyl groups for complexing with cupric ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.