Abstract

Self-assembled monolayers (SAMs) of thiolated compounds are formed by the spontaneous chemisorption of thiolate groups on metal surfaces. In biosensors, they are most commonly used to covalently immobilize a biorecognition molecule onto the surface of the transducer, thus offering the possibility of controlling the orientation, distribution, and spacing of the sensing element while reducing nonspecific interactions. In this paper, self-assembled monolayers of dithiolated derivatives of 3,5-dihydroxybenzyl alcohol containing carboxyl and hydroxyl end groups have been prepared on gold surfaces and characterized by cyclic voltammetry and electrochemical impedance spectroscopy. Impedance measurements revealed that SAM formation is essentially completed after 3-5 h of exposure by observing the successive blocking of the faradic response of ferricyanide anion due to the adsorption of the dithiol molecules. The surface coverage of these molecules, estimated by reductive desorption experiments, was in the range of (1.1-2.8) x 10-10 mol/cm2. To demonstrate the potential of the dithiol SAM, a model system for detection of a tumor marker, prostate-specific antigen (PSA), was developed. The carboxyl groups of the SAM were succinimide-activated, and an anti-PSA antibody was covalently immobilized via amide bonds. The modified SAM was used for the label-free detection of prostate-specific antigen using EIS with a detection limit of 9 ng/mL. The results described here demonstrate that this kind of dithiol-modified SAM can be used as supports in electrochemical biosensors and the results are explained in terms of the structural features of these dithiols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.