Abstract

We have studied the effects of superconducting grain boundary disorder on the normal state transport properties of cuprate films. Dip-coated granular YBa 2Cu 3O 7− y (YBaCuO) thick films on polycrystalline MgO substrates were synthesized and networked grains were systematically made less disordered in order to probe the crossover from strong to weak inter-grain disorder. Grain boundary passivation was achieved by metallic inclusions of different forms. We have shown that the normal state of samples exhibit a semiconducting behavior and changes to ‘metallic’ with sharper transitions to the superconducting state as we reduce grain-interfaces disorder, i.e. increase metallic inclusion content. On the basis of electron localization mechanisms, the normal state conductivity is thus shown to undergo a dimensional crossover from 3D to 2D in the frame of the variable-range hopping (VRH) regime. The transition threshold was found to depend on the form of metallic inclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.