Abstract

New insights into the biochemistry of cardiac arrhythmia and skeletal muscle fatigue have yielded new drug candidates to counteract these phenomena. Major biological targets have become ryanodine receptor (RyR)-based Ca(2+)-release channels, which tend to 'leak' under various circumstances including strenuous exercise and, thus, cause aberrant calcium sparks that entail impaired muscle function. Therapeutics, which are referred to as rycals, are currently being developed to treat cardiac arrhythmia via enhancement of calstabin-ryanodine affinities that causes a stabilization of the RyR. These therapeutics possess potential for misuse in sports, and an early implementation of target analytes such as the benzothiazepine derivatives S-107 and JTV-519 or putative metabolites into doping control screening procedures is recommended. Reference compounds, deuterated analogues, and a putative metabolic product were synthesized, and electron ionization mass spectra of these products were studied and dissociation pathways elucidated by means of tandem mass spectrometry (MS/MS) and accurate mass measurements. The characterized analytes were incorporated into existing sports drug testing assays based on liquid-liquid extraction and subsequent gas chromatography/mass spectrometry (GC/MS) analysis, and specificity, lower limit of detection (4-6 ng/mL), intraday and interday precision (1.5-17.2%), as well as recovery (63-66%) were determined. The established procedure proved suitable for routine doping control analysis to detect a potential misuse of the drug candidate S-107 in elite sport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.