Abstract

In this paper, we study the electron effective Landé g-factor in the InAs quantum wire under an applied magnetic field and the Rashba effect. For this goal, we first present an analytic solution to one-particle Schrödinger equation in the presence of both magnetic field and spin–orbit interaction (SOI). Then, using the obtained energy levels, we study the electron effective Landé g-factor. It is found that: (i) The effective Landé g-factor decreases when magnetic field increases. (ii) By increasing the confinement length l 0 , the electron g-factor decreases. (iii) By increasing the strength of SOI, the electron g-factor increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.