Abstract

We demonstrate that ultrashort pulses carry the possibility for a new regime of light-matter interaction with nonadiabatic electron processes sensitive to the envelope derivative of the light pulse. A standard single pulse with its two peaks in the derivative separated by the width of the pulse acts in this regime like a traditional double pulse. The two ensuing nonadiabatic ionization bursts have slightly different ionization amplitudes. This difference is due to the redistribution of continuum electron energy during the bursts, negligible in standard photoionization. A time-dependent close-coupling approach based on cycle-averaged potentials in the Kramers-Henneberger reference frame permits a detailed understanding of light-pulse derivative-driven electron dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.