Abstract

Abstract This paper describes the effect of 8 MeV of electron beam (EB) energy irradiation on the electrical conductivity and dielectric properties of sodium fluoride NaF-doped polyethylene oxide (PEO) film. The structural and chemical characterizations were employed using X-ray diffractometry (XRD) and Fourier Transform Infrared (FTIR) techniques respectively before and after irradiation. The morphology study carried out using Scanning Electronic Microscopy (SEM) analysis. The DC electrical conductivity showed increases with dose and temperature and was consistent with Arrhenius behavior. The maximum conductivity of 1.1 × 10−5 S/cm and minimum activation energy of 0.25 eV were obtained at 25 kGy, 338 K; further increases in the dose resulted in a reduction in conductivity. The real (e′) and imaginary (e″) part of the dielectric constant suddenly decreased in a low frequency region (40–640 Hz), subsequently independent at higher frequency. The AC conductivity showed increases with frequency and temperature for all films. The dielectric constant and AC conductivity increased at the 25 kGy dose due to chain scission. Further increases in dose such as 50 and 75 kGy, resulted in a decrease in dielectric constant and AC conductivity due to cross-linking. The electric modulus approach was used to calculate the dielectric relaxation time (τ), which decreased at 25 kGy and then increased at 50 and 75 kGy doses. The modulus data were fitted using a non-exponential Kohlrausch–Williams–Watts (KWW) function ϕ (t), and the results indicate the existence of a non-Debye relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.