Abstract

AbstractAlthough the incorporation of 2D perovskite into 3D perovskite can greatly enhance intrinsic stability, power conversion efficiency (PCE) of 2D/3D perovskite is still inferior to its 3D counterpart due to poor carrier transport kinetics resulted from the quantum and dielectric confinement of 2D component. To overcome this issue, the electron acceptor molecule 1,2,4,5‐tetracyanobenzene (TCNB) was introduced to trigger intermolecular π–π interaction in 2D perovskite along with the electronic doping of 2D/3D perovskite to improve charge transfer efficiency. By virtue of high electron affinity, TCNB can undergo electron transfer reaction and subsequently establish π–π interaction with 1‐naphthalenemethylammonium (NMA) cations, greatly strengthening lattice rigidity and reducing exciton binding energy. Transmission electron microscopy results demonstrate that 2D phases are mainly distributed at grain boundaries, reducing defect density and weakening nonradiative recombination. Meanwhile, the p‐type doping of perovskite by TCNB optimizes energy level alignment at perovskite/hole transport layer interface. Consequently, PCE of champion device is significantly boosted to 24.01 %. The unencapsulated device retains an initial efficiency close to 94 % after exposure to ambient environment for over 1000 h. This work paves a novel path for designing new mixed‐dimensional perovskite solar cells with high PCE and superior stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.