Abstract

We present a global model for the acceleration of electrons in the framework of the statistical flare model of Vlahos et al. In this model, solar flares are the result of an internal self-organized critical (SOC) process in a complex, evolving, and highly inhomogeneous active region. The acceleration of electrons is due to localized DC electric fields closely related to the energy-release process in the active region. Our numerical results for the kinetic energy distribution of accelerated electrons show a power-law or an exponential-law behavior, depending on the maximum trapping time of the energetic particles inside the acceleration volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.