Abstract

Dynamic polarization control of light is essential for numerous applications ranging from enhanced imaging to materials characterization and identification. We present a reconfigurable terahertz metasurface quarter-waveplate consisting of electromechanically actuated micro-cantilever arrays. Our anisotropic metasurface enables tunable polarization conversion cantilever actuation. Specifically, voltage-based actuation provides mode selective control of the resonance frequency, enabling real-time tuning of the polarization state of the transmitted light. The polarization tunable metasurface has been fabricated using surface micromachining and characterized using terahertz time domain spectroscopy. We observe a ~230 GHz cantilever actuated frequency shift of the resonance mode, sufficient to modulate the transmitted wave from pure circular polarization to linear polarization. Our CMOS-compatible tunable quarter-waveplate enriches the library of terahertz optical components, thereby facilitating practical applications of terahertz technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.