Abstract

Graphene foam (GF)—a three-dimensional porous structure that comprises several graphene layers—has excellent physical properties and, consequently, exciting possible applications. In this work, we report the mechanical behavior of GFs that were grown using high-temperature chemical vapor deposition (CVD) and subjected to electrostatic tensile loads. We show that such loads reduce the mechanical stiffness of the GF (Young's modulus in the kilo-Pascal range) and release prestresses generated during growth. In addition, GF demonstrates electrostatic resonance. By characterizing the fundamental electromechanical behavior of GF, this Letter paves the way toward the development of novel GF-based devices, such as GF electrostatic resonant sensors, flexible capacitors, and micro- and nanoelectromechanical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.