Abstract

In this paper, we have designed an all-optical controllable gas detector by doping 3-level Λ type nanocrystals in the moving arms' mirror of Michelson interferometer and used electromagnetically induced transparency (EIT) phenomenon to change its refractive index. By this means, we have created a controllable phase difference between light beams in two arms of the Michelson interferometer, where reflection phase of the EIT-based mirror changes about π radiant. Also, the signal reflection from EIT-based mirror changes between 0% and 100% approximately, while the second arm's signal is reflected completely. This EIT-based mirror's refractive index change can be a good alternative for conventional Michelson interferometer-based gas detector with one mechanical moving arm mirror (Undergraduate Instrumental Analysis, 6th edn. Marcel Dekker, New York, 2005), where long response time and unfix moving speed were its main drawbacks. While, in this scheme, not only these disadvantages are removed but also the response time can reach the electron transient time between the atomic energy levels. Then, by this all-optical tunable gas detector, we have achieved many modifications such as response time in sub-nanoseconds, high resolution, and high accuracy, or less cross sensitivity to other gas species.

Highlights

  • The hydrogen sulfide (H2S) is a colorless, toxic, and flammable gas, which is partially responsible for the foul odor of rotten eggs

  • It is well known that increasing the control field intensity broadens the electromagnetically induced transparency (EIT) window; the slope of the refractive index decreases

  • Valuable researches have been done on EIT, and its applications have been extended approximately to all fields of optics

Read more

Summary

Introduction

The hydrogen sulfide (H2S) is a colorless, toxic, and flammable gas, which is partially responsible for the foul odor of rotten eggs. It often results from the bacterial break down of sulfates in organic matter in the absence of oxygen, such as in swamps and sewers. It occurs in volcanic gases, natural gas, and some well waters [1,2]. Small amounts of hydrogen sulfide occur in crude petroleum, but natural gas can contain up to 90%. Normal concentration of the H2S in clean air is about 0.0001 to

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.