Abstract
An electromagnetic (EM) scattering model for layered media covered by a 3D infinite rough surface and the corresponding inversion technique are investigated. The work aims at remote sensing the surface roughness and dielectric constant for different depths of bear soil through radar measurement data. The forward problem is carried out by the wave decomposition method. The small perturbation method (SPM) and EM boundary conditions are employed to solve the integral equations introduced by the wave decomposition method. The second-order SPM solution of the scattering field is involved in the computation of the forward problem for the first time. The backscattering coefficients of multiple frequencies, multiple angles and multiple polarizations are employed to create a nonlinear optimization problem. A genetic algorithm is introduced to help the inversion procedure approach to the global minimum of the cost function. Examples are carried out to validate the inversion technique. The inversion results show good agreement with the forward problem with given parameters and pose good tolerance to the input data with the additive white Gaussian noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.