Abstract

One of the overarching goals in nuclear science is to understand how the nuclear chart emerges from the underlying fundamental interactions. The description of the structure of nuclei from first principles, using ab initio methods for the solution of the many-nucleon problem with inputs from chiral effective field theory, has advanced dramatically over the past two decades. We present an overview over the available ab initio tools with a specific emphasis on electromagnetic observables, such as multipole moments and transition strengths. These observables still pose a challenge for ab initio theory and are one of the most exciting domains to exploit synergies with modern experiments. Precise experimental data are vital for the validation of the theory predictions and the refinement of ab initio methods. We discuss some of the past and future experimental efforts highlighting these synergies. This article is part of the theme issue 'The liminal position of Nuclear Physics: from hadrons to neutron stars'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.