International Journal of Molecular Sciences | VOL. 23
Read
Electrolyzed–Reduced Water: Review II: Safety Concerns and Effectiveness as a Source of Hydrogen Water
Abstract
Many studies demonstrate the safety of alkaline-electrolyzed–reduced water (ERW); however, several animal studies have reported significant tissue damage and hyperkalemia after drinking ERW. The mechanism responsible for these results remains unknown but may be due to electrode degradation associated with the production of higher pH, in which platinum nanoparticles and other metals that have harmful effects may leach into the water. Clinical studies have reported that, when ERW exceeds pH 9.8, some people develop dangerous hyperkalemia. Accordingly, regulations on ERW mandate that the pH of ERW should not exceed 9.8. It is recommended that those with impaired kidney function refrain from using ERW without medical supervision. Other potential safety concerns include impaired growth, reduced mineral, vitamin, and nutrient absorption, harmful bacterial overgrowth, and damage to the mucosal lining causing excessive thirst. Since the concentration of H2 in ERW may be well below therapeutic levels, users are encouraged to frequently measure the H2 concentration with accurate methods, avoiding ORP or ORP-based H2 meters. Importantly, although, there have been many people that have used high-pH ERW without any issues, additional safety research on ERW is warranted, and ERW users should follow recommendations to not ingest ERW above 9.8 pH.
Concepts
Concentration Of H2 Platinum Nanoparticles Excessive Thirst Medical Supervision Safety Concerns Nutrient Absorption Therapeutic Levels Significant Hyperkalemia Harmful Effects Animal Studies
Introducing Weekly Round-ups!Beta
Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.
Climate change Research Articles published between Jan 23, 2023 to Jan 29, 2023
Climate change adaptation has shifted from a single-dimension to an integrative approach that aligns with vulnerability and resilience concepts. Adapt...
Read MoreDisclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.