Abstract
Abstract In this study, Sn was electrodeposited onto the porous nickel foam substrate under pulse electrodeposition conditions. Pulse electrodeposition was carried out at three different peak current densities of 10, 20 and 40 mA/cm 2 for 5 min in a pyrophosphate bath containing 40 g/L SnCl 2 .2H 2 O, 164 g/L K 4 P 2 O 7 and 19 g/L Glycin. Surface morphology of Sn–Ni foam electrodes were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to understand the elemental surface composition of composites. X-ray diffraction (XRD) analysis was carried out to investigate the crystal structure of Sn–Ni foam electrode. The electrochemical performances of electrodes were investigated by charge/discharge tests, cyclic voltammetry experiments and the ac impedance technique. The results yielded encouraging discharge capacities since Ni foam behaves as a stress buffering layer as well as an electronic conductivity component.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.