Abstract

Understanding electrodes' surface morphology influence on ions' distribution is essential for designing supercapacitors with enhanced energy density characteristics. We develop a model for the structure of electrolytes near the rough surface of electrodes. The model describes an effective electrostatic field's increase and associated intensification of ions' spatial separation at the electrode-electrolyte interface. These adsorption-induced local electric and structure properties result in notably increased values and a sharpened form of the differential capacitance dependence on the applied potential. Such capacitance behavior is observed in many published simulations, and its description is beyond the capabilities of the established flat-electrodes theories. The proposed approach could extend the quantitatively verified models providing a new instrument of the electrode surface-parameter optimization for specific electrolytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.