Abstract

Percolation of blood and of interstitial fluids into implantable continuous glucose sensors (CGS) for diabetics presently limits sensor lifetime between 3 and 7 days. Na + mobile ions in body fluids damage Si-based CGS sensors electronics. The direct detection of Na percolation is investigated by Ion Beam Analysis (IBA) and Proton Induced X-ray Emission (PIXE) in previously used CGS. Based on these results, a new technology called HemaDrop TM is then tested to prepare small volume (5-10 µL) of blood for IBA. A species’s detectability by IBA scales with the square of the ratio of element’s atomic number Z to that of the substrate. Because Na has a low atomic number ( Z =11), Si signals from sensor substrates can prevent Na detection in Si by 2 mega electron volt (MeV) IBA. Using 4.7 MeV 23 Na (α, α) 23 Na nuclear resonance (NR) can increase the 23 Na scattering cross section and thus its detectability in Si. The NR energy, width, and resonance factor, is calibrated via two well-known alpha (α) particle signals with narrow energy spreads: a 5.486 ± 0.007 MeV 241 Am α-source (ΔE = 0.12%) and the 3.038 ± 0.003 MeV 16 O(α, α) 16 O NR (ΔE = 0.1%). Next, the NR cross section is calibrated via 100 nm NaF thin films on Si(100) by scanning the beam energy. The 23 Na (α, α) NR energy is found to be 4.696 ± 0.180 MeV, and the NR/RBS cross section 141 ± 7%. This is statistically significant but small compared to the 4.265 MeV 12 C NR (1700%) and 3.038 MeV 16 O NR (210%), and insufficient to detect small amounts of 23 Na in Si. Next, a new method of sample preparation HemaDrop TM , is tested for detection of elements in blood, such Fe, Ca, Na, Cl, S, K, C, N, and O, as an alternative to track fluid percolation and Na diffusion in damaged sensors. Detecting more abundant, heavier elements in blood and interstitial fluids can better track fluid percolation and Na + ions in sensors. Both Na detection and accuracy of measured blood composition by IBA is greatly improved by using HemaDrop TM sample preparation to create Homogeneous Thin Solid Films (HTSFs) of blood from 5-10 µL on most substrates. HTSF can be used in vacuo such as 10 -8 –10 -6 Torr).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.