Abstract
Abstract Electroencephalography (EEG), a method of continuously recording the electrical activity of the brain, provides signals that are among the most promising types of information usable in vital biometrics. However, reliable biometrics based on EEG are still under development since it remains unclear how to extract EEG features that can be used to identify individuals the most effectively. In this study, new EEG features for use in biometrics were proposed and their effectiveness for personal authentication was demonstrated using an open-access EEG database containing 109 personal EEG datasets. From the EEG signals, we extracted 10 single-channel features (seven spectral and three nonlinear) by performing spectral and nonlinear analyses and 10 multichannel features by conducting network analysis based on phase synchronization. A distance-based classifier was built based on the extracted features to distinguish the self from the others. The performance of the proposed personal authentication scheme was assessed in terms of the equal error rate (EER) and false rejection rate (FRR) when the false acceptance rate (FAR) was fixed at 1%. The EER was 0.73% with the eyes open (REO) and 1.80% with the eyes closed (REC), and the FRR with a 1% FAR was 1.10% (REO) and 2.20% (REC). These results are superior to those of previous studies in which the same database was used. In addition, the nonlinear and network features appeared more important than the spectral features for authentication. This method of utilizing EEG features for personal authentication is expected to facilitate the advancement of EEG-based biometric systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.