Abstract
The problem of an anti-plane interface crack in a layered piezoelectric plate composed of two bonded dissimilar piezoelectric ceramic layers subjected to applied voltage is considered. It is assumed that the crack is either impermeable or permeable. An integral transform technique is employed to reduce the problem considered to dual integral equations, then to a Fredholm integral equation by introducing an auxiliary function. Field intensity factors and energy release rate are obtained in explicit form in terms of the auxiliary function. In particular, by solving analytically a resulting singular integral equation, they are determined explicitly in terms of given electromechanical loadings for the case of two bonded layers of equal thickness. Some numerical results are presented graphically to show the influence of the geometric parameters on the field intensity factors and the energy release rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.