Abstract

AbstractTyrosinase was immobilized on polystyrene latex particles in order to control amounts of the enzyme. The tyrosinase‐coated latex particles were composed of the core polystyrene and four successive coating layers: polystyrene sulfonate, polyallylamine, tyrosinase and polyallylamine again, built up by the layer‐by‐layer technique. They showed catalytic currents for the enzymatic oxidation of catechol to o‐quinone. The enzyme activity per particle was evaluated as 2.3×10−7 units from UV absorption of o‐quinone. The relation between the catalytic current and the concentration of catechol leads to a Michaelis‐Menten type kinetic equation. The layer‐by‐layer method was found to have a deactivating effect on enzyme catalysis. In spite of this, the catechol oxidation current was larger than the current from free tyrosinase at a common value of enzyme units per volume. This is ascribed to strong adsorption of the latex particles on the electrode, leading to the enhancement of the local concentration of tyrosinase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.