Nature Communications | VOL. 11
Read
Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media
Abstract
Carbon capture is essential for mitigating carbon dioxide emissions. Compared to conventional chemical scrubbing, electrochemically mediated carbon capture utilizing redox-active sorbents such as quinones is emerging as a more versatile and economical alternative. However, the practicality of such systems is hindered by the requirement of toxic, flammable organic electrolytes or often costly ionic liquids. Herein, we demonstrate that rationally designed aqueous electrolytes with high salt concentration can effectively resolve the incompatibility between aqueous environments and quinone electrochemistry for carbon capture, eliminating the safety, toxicity, and at least partially the cost concerns in previous studies. Salt-concentrated aqueous media also offer distinct advantages including extended electrochemical window, high carbon dioxide activity, significantly reduced evaporative loss and material dissolution, and importantly, greatly suppressed competing reactions including under simulated flue gas. Correspondingly, we achieve continuous carbon capture-release operations with outstanding capacity, stability, efficiency and electrokinetics, advancing electrochemical carbon separation further towards practical applications.
Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.
Climate change Research Articles published between Aug 08, 2022 to Aug 14, 2022
Introduction: There is no consensus on the policies that should be seen as implicitly pricing carbon (see World Bank (2019a) for a discussion). The OE...
Read MoreGender Equality Research Articles published between Aug 08, 2022 to Aug 14, 2022
I would like to thank Anna Khakee, Federica Zardo and Ragnar Weilandt for their very useful comments as well as the participants of the workshop of 21...
Read MoreDisclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.