Abstract
A homogeneous electrochemical aptasensor was obtained by modifying a glassy carbon electrode (GCE) with a porous carbon nanomaterial (Z-1000, about 70nm, deteced by transmission electron microscopic) that was obtained by carbonization of a zinc(II)-2-methylimidazole metal-organic framework. Z-1000 possesses a large specific surface and outstanding electrochemical properties. A thrombin-binding aptamer (CP) was immobilized on the magnetite nanoparticles MNPs by the condensation reaction and further combined with reporter probe (RP) that is functionalized with electroactive methylene blue (MB). In the presence of thrombin, the CP was specifically recognized with it to formthe CP/MNP/Thb complex, and the RP was dissociated from MNPs. The released RP was captured by the modified GCE through π-stacking interaction between nucleobases and carbon nanostructure. The electrical signal generatedby MB can be monitored by differential pulse voltammetry (DPV). Under the optimized conditions, the DPV peak current at around -0.28V (vs.SCE) increases with thrombin concentration. The sensor has a detection limit of 0.8 fM of thrombin and a linear range that extends from 10 fM to 100nM. It was successfully applied to the analysis of spiked serum. The recoveries are 98.1-99.4% and RSDs are 3.9%-4.0%. Conceivably, this aptasensor schemecan be easily extended to other proteins and gives inspiration to manufacture sensitive aptasensor. Graphical abstract A homogeneous electrochemical aptasensor is obtained by modifying a glassy carbon electrode with the MOF-derived porous carbon. The sensor has a detection limit of 0.8 fM and a wide linear range from 10 fM to 100nM for thrombin detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.