Abstract
The efficient scale-up of CO2-reduction technologies is a pivotal step to facilitate intermittent energy storage and for closing the carbon cycle. However, there is a need to minimize the occurrence of undesirable side reactions like H2 evolution and achieve selective production of value-added CO2-reduction products (CO and HCOO–) at as-high-as-possible current densities. Employing novel electrocatalysts such as unsupported metal aerogels, which possess a highly porous three-dimensional nanostructure, offers a plausible approach to realize this. In this study, we first quantify the electrochemical surface area of an Au aerogel (≈5 nm in web thickness) using the surface oxide-reduction and copper underpotential deposition methods. Subsequently, the aerogel is tested for its CO2-reduction performance in an in-house developed, two-compartment electrochemical cell. For comparison purposes, similar measurements are also performed on polycrystalline Au and a commercial catalyst consisting of Au nanoparticles supported on carbon black (Au/C). The Au aerogel exhibits a faradaic efficiency of ≈97% for CO production at ≈−0.48 VRHE, with a suppression of H2 production compared to Au/C that we ascribe to its larger Au-particle size. Finally, identical-location transmission electron microscopy of both nanomaterials before and after CO2-reduction reveals that, unlike Au/C, the aerogel network retains its nanoarchitecture at the potential of peak CO production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.