Abstract

The internal corrosion of mild steel in the presence of hydrogen sulfide (H2S) represents a significant challenge in oil production and natural gas treatment facilities, but the underlying mechanisms involved in H2S corrosion are still not fully understood. This lack of knowledge makes the prediction, prevention, and/or control of aqueous H2S corrosion of mild steel much more difficult. In the present study, H2S corrosion mechanisms were experimentally investigated in short-term corrosion tests (lasting 1 h to 2 h), conducted in a 1 wt% sodium chloride (NaCl) solution at different pH (pH 2 to pH 5), at different temperatures (30°C to 80°C), under various H2S/N2 gaseous concentration ratios (0 to 10%[v]) and flow rates, using a X65 mild steel rotating cylinder electrode. Corrosion rates were measured by linear polarization resistance (LPR). Corrosion mechanisms were investigated by using potentiodynamic sweeps and by comparison with electrochemical modeling. LPR results showed that corrosion rates increase...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.