Abstract

Functionality of organic photonic devices is markedly influenced by the electronic band structure of the used materials. An easy and quick determination of the density of states function (DOS) in the whole energy range from HOMO to LUMO, including the presence of defect states in the band gap, is a prerequisite to a successful design of photonic devices. In this study we present the fine band gap electronic structure mapping in P3HT with two electrochemical spectroscopic methods: the energy-resolved electrochemical impedance spectroscopy (ER-EIS) and the kinetic sensitive voltcoulometry (VCM). We showed that the P3HT exposition to air results in the change of light-induced polaron states in the band gap. The electrochemically measured data are compared with those from the literature, obtained with combined optical spectroscopic methods, electrical methods, or first-principles calculations. The ER-EIS method has been shown as capable of providing valuable information on the DOS in the whole energy range fr...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.