Abstract

Coronavirus (COVID-19), a deadly pandemic has spread worldwide and created many global health issues. Though methods of its detection are being continuously developed for the early detection and monitoring of COVID-19, still there is need for more novel methods. The presently used methods include rapid antigen tests, serological surveys, reverse transcription-polymerase chain reaction (RT-PCR), artificial intelligence-based techniques, and assays based on sensors/biosensors. Of all these, RT-PCR test has high sensitivity and specificity though it requires more time for testing and need for skilled technicians. Recently, electrochemical sensors have been developed for rapid monitoring and detection of SARS-CoV-2 from the patient’s biological fluid samples. This review covers the recently developed electrochemical sensors that are focused on the detection of viral nucleic acid, immunoglobulin, antigen, and the entire viral particles. In addition, we also compare and assess their detection limits, sensitivities and specificities for the identification and monitoring of COVID-19. Furthermore, this review will address the best practices for the development of electrochemical sensors such as electrode fouling, limit of detection/limit of quantification determination and verification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.