Abstract
It is established that ultrathin layered double hydroxide nanosheets (LDHNS) and zeolitic imidazole frameworks (ZIF) are desirable electrochemical sensing modifiers owing to their large surface area and abundant catalytic sites. Integration of them is thus an effective solution to maximize their electrocatalytic activity. Herein, a novel reaction–diffusion framework (RDF) technique is applied for the in situ growth of ZIF-67 on ultrathin CoAl-LDHNS (CoAl-LDHNS@ZIF-67). In a confined space of the agar gel matrix of RDF, the coordination reaction between organic ligands and CoAl-LDHNS without an additional Co2+ source achieves the controllable growth of ZIF-67 crystals through a long vertical diffusion. The prepared composite comprises both CoAl-LDHNS and ZIF-67 components with a certain ratio and provides a large surface area and amply catalytic sites, thus realizing a rapid transfer of electron and mass. The CoAl-LDHNS@ZIF-67 modified electrode is employed for the simultaneous detection of naphthol isomers by differential pulse voltammetry. Naphthol isomers display anodic reactions with a wide peak potential difference, allowing their simultaneous detection feasible. Voltammetric responses of α-naphthol and β-naphthol follow good linearity against the concentration in a wide range from 0.3 to 150 μM with limits of detection of 54 and 82 nM, respectively. The proposed sensor also demonstrates excellent selectivity, stability, reproducibility, and practicability for the simultaneous detection of naphthol isomers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.