Abstract

AbstractRational design of electrocatalysts is essential to achieve desirable performance of electrochemical synthesis process. Heterostructured catalysts have thus attracted widespread attention due to their multifunctional intrinsic properties, and diverse catalytic applications with corresponding outstanding activities. Here, we report an in situ restoration strategy for the synthesis of ultrathin Pd‐Ni(OH)2 nanosheets. Such Pd‐Ni(OH)2 nanosheets exhibit excellent activity and selectivity towards reversible electrochemical reforming of ethylamine and acetonitrile. In the acetonitrile reduction process, Pd acts as reaction center, while Ni(OH)2 provide proton hydrogen through promoting the dissociation of water. Also ethylamine oxidation process can be achieved on the surface of the heterostructured nanosheets with abundant Ni(II) defects. More importantly, an electrolytic cell driven by solar cells was successfully constructed to realize ethylamine‐acetonitrile reversible reforming. This work demonstrates the importance of heterostructure engineering in the rational synthesis of multifunctional catalysts towards electrochemical synthesis of fine chemicals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.